Texatherm is a highly refined, thermally stable mineral oil-type transfer fluid formulated with premium base oil technology. For use as a heat transfer fluid in both closed and open heat transfer systems with forced circulation.

APPLICATIONS
Heat transfer systems where fuel oil, gas, or electricity is used to heat a fluid, which then transfers the heat to the point of application.

Suitable for open or closed heat transfer systems with forced circulation operating under the following conditions:

- Maximum bulk oil temperature: 288°C
- Maximum film temperature on heater surfaces: 316°C
- Maximum temperature of oil surface in contact with air in open systems: 107°C

Systems must have forced circulation of the heat transfer fluid.

BENEFITS

- **Maximum energy efficiency**
 Effective heat transfer properties enable efficient transfer of heat.

- **Resists deposit formation**
 Effective thermal stability and oxidation resistance help to avoid formation of sludges and coke deposits, providing long oil service life.

- **Rapid response at start-up**
 Low temperature flow characteristics allow prompt circulation.

- **Economical low pressure operation**
 Low vapour pressure at elevated temperatures minimizes evaporation, vapour lock and pump cavitation, allowing efficient operation at lower system pressures, avoiding the need for expensive high-pressure piping and heat exchangers.
TYPICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Product Code</th>
<th>1357</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Grade</td>
<td>46</td>
</tr>
<tr>
<td>Autoignition Temperature, °C</td>
<td>360</td>
</tr>
<tr>
<td>Flash Point, COC, °C</td>
<td>246</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-15</td>
</tr>
<tr>
<td>Viscosity, mm²/s @ 40°C</td>
<td>46.6</td>
</tr>
<tr>
<td>Viscosity, mm²/s @ 100°C</td>
<td>7.1</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>112</td>
</tr>
<tr>
<td>Physical & Thermal Properties versus Temperature</td>
<td></td>
</tr>
<tr>
<td>Density, kg/L</td>
<td>100°C</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>Dynamic Viscosity, mPa.s</td>
<td>5.74</td>
</tr>
<tr>
<td>Specific Heat, kJ/kg.°C</td>
<td>2.33</td>
</tr>
<tr>
<td>Thermal Conductivity, W/m.°C</td>
<td>0.117</td>
</tr>
<tr>
<td>Vapour Pressure, mmHg</td>
<td>0.0011</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion x10⁴ /°C</td>
<td>8.3</td>
</tr>
</tbody>
</table>

PACK SIZES

1000L, 205L

SERVICE CONSIDERATIONS

Certain precautions should be taken to ensure satisfactory performance of heat transfer fluids in service:

System Cleanliness

The heat transfer system, whether new or used, should be thoroughly cleaned and flushed with Texatherm before being placed in service. Sometimes this cleaning will require the use of chemical cleaners, usually in the form of an alkaline cleaning agent. These products are supplied, and are usually applied, by specialist industrial cleaning companies. In use they are often mixed with very hot water and pumped continuously through the system to remove deposits. If such chemical cleaners mixed with water are used, all traces of water and the cleaner must be removed from the system prior to it being brought back into service. Hot air blowing will usually successfully remove residual water.

Heat Transfer System Materials

Iron and steel are the preferred materials for heating system construction. Copper and copper alloys should not be used in heat transfer systems with a hydrocarbon fluid unless air (oxygen) is excluded from contact with the fluid by hermetic sealing and/or an inert gas "blanket".
The heater should be constructed with a minimum of refractory to improve thermal response, and to reduce heat-soak into the fluid in case of pump failure.

System Seal
Hot heat transfer fluid must be prevented from contacting the air in the expansion tank since air will cause rapid oxidation. To accomplish this, the expansion tank should be located and piped so that fluid in it remains cool (below 55°C).

Hot Spots
The system should be free of hot spots which will degrade the fluid and cause the formation of hard carbon deposits on the system surfaces. The fluid should be circulated through the heater with a fully turbulent flow, with a surface speed between 2 and 3 metres per second, depending on surface geometry and operating temperature.

The system should be designed so that:

1. The circulating pump is started before heat is applied to the heater
2. The circulating pump runs for some time after the heater is turned off
3. The heater will shut off in the event of circulating pump failure or the development of excessive temperatures.

Full fluid flow must always be maintained through the heater, regardless of the conditions at the heat exchanger. The system should be designed for the bypass of fluid at the heat exchanger if the full fluid flow is not required there. This will ensure that full fluid flow is retained at the heater.

In-Service Oil Testing
The viscosity, acid number, flash point and insolubles content of the in service fluid should be monitored regularly. Samples should be taken within a few days of start-up, and every six months afterward. Generally, it is the rate of change of in-service fluid properties which indicates the suitability of the fluid for further service.

ENVIRONMENT, HEALTH AND SAFETY
Users should consult the MSDS, follow the precautions outlined and comply with all laws and regulations concerning its use and disposal. Used packaging material should not be incinerated or exposed to flame. After use, protect your environment. Do not pollute drains, soil or water with used product.

OTHER INFORMATION
For further information on Caltex products and services call the Lubelink Advisory Service on 1300 364 169 between 8.00am and 6.00pm (EST) Monday to Friday.

Information in this publication is accurate at the time of printing and reasonable care has been taken to ensure it is complete and accurate. However, this information is subject to change (such as when formulations or usage and storage information changes). Please visit www.caltex.com.au for the latest product information. Independent advice should be sought before taking any action in reliance on the information in this publication, and Caltex Australia Limited and its related bodies corporate accept no liability for any reliance on this publication's content.